作者:gswycjc 来源:本站整理
发布/更新时间:2008-11-09 19:17:17

许宝騄,数学家。在中国开创了概率论、数理统计的教学与研究工作。在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。
许宝騄幼年随父赴任,曾在天津、杭州等地留居,大部分时间都由父亲聘请家庭教师传授,攻读《四书》 、 《五经》 、历史及古典文学,10岁后就学作文言文,因此他的文学修养很深,用语、写作都很精练、准确。1925年才进中学,在北京汇文中学从高一读起,1928年汇文中学毕业后考入燕京大学理学院。由于中学期间受表姐夫徐传元的影响,对数学颇有兴趣,入大学后了解到清华大学数学系最好,决心转学念数学。1929年入清华大学数学系,仍从一年级读起。当时的老师有熊庆来、孙光远、杨武之等,一起学习的有华罗庚、柯召等人。1933年毕业获理学士学位,经考试录取赴英留学,体检时发现体重太轻不合格,未能成行。于是下决心休养一年。1934年任北京大学数学系助教,担任正在访问北京大学的美国哈佛大学教授奥斯古德的助教,前后共两年,奥斯古德在他后来出版的书中,提到了许宝騄的帮助。奥斯古德是分析方面的专家,在这两年内许宝騄做了大量的分析方面的习题,也开始了一些研究,1935年他发表了两篇论文,其中一篇是与江泽涵合作的,都是分析方面的论文。那时芬布尔和阿蒂肯合写的《标准矩阵论》已出版,许宝騄熟练地掌握了矩阵的工具,尤其精通分块演算的技巧。所以这两年内他在分析和代数两方面都打下了扎实的基础。1936年许宝騄再次考取了赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。1938年许宝騄共发表了3篇论文。当时伦敦大学规定数理统计方向要取得哲学博士的学位,必需寻找一个新的统计量,编制一张统计量的临界值表,而许宝騄因成绩优异,研究工作突出,第一个被破格用统计实习的口试来代替。1938年他获得了哲学博士学位。同年,系主任内曼受聘去美国加州大学伯克利分校,他推荐将许宝騄提升为讲师,接替他在伦敦大学讲课。1939年,许宝騄又发表了两篇论文,1940年又发表了3篇。其中两篇文章是数理统计学科的重要文献,在多元统计分析和内曼-皮尔逊理论中是奠基性的工作,因此他获得了科学博士的学位。
抗日战争爆发后,他决定回国效劳,终于在1940年到昆明,在西南联合大学任教。钟开莱、王寿仁、徐利治等均是他的学生。在1945年秋,他应邀去美国加州大学伯克利分校和哥伦比亚大学任访问教授,各讲一个学期,学生中有安德森,莱曼等人。1946年到北卡罗莱纳大学任教。一年后,他决心回国,谢绝了一些大学的聘任,回到北京大学任教授。1948年他当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。1955年,他当选为中国科学院学部委员。1963年发现肺部有空洞,他的结核菌已有抗药性时,组织屡次安排他休养,他均谢绝,并且一个人领导3个讨论班(平稳过程、马氏过程、数理统计),带领青年人搞科研。他在60年代中期,对组合数学有浓厚的兴趣,1966年初,与段学复教授联合主持组合数学的讨论班,因“文化大革命”而被迫中断。然而他自己不顾条件如何,始终坚持科研,在1970年12月逝世时,他床边的小茶几上还放着一支钢笔和未完成的手稿。1983年,德国施普林格出版社刊印了《许宝騄全集》 ,全集是由钟开莱主编的,共收集了已发表的、未被发表的论文40篇。1980年与1990年秋,北京大学两次举办纪念会,并出版了《许宝騄文集》。
1936年到1940年,伦敦大学学院统计系正处于鼎盛时期,皮尔逊退休后,由费歇任高尔顿实验室主任,皮尔逊当系主任。一些学者陆续前来访问,包括美国的多元分析专家霍太林,威尔克斯,频率曲线专家克莱格,概率专家费勒。教师中有内曼这样的教授,所以许宝騄很快就接触到数理统计方面科学前沿的情况。自30年代到40年代,正是N.P.理论(内曼-皮尔逊理论)的形成时期。对于点估计和假设检验,首次提出优良性的概念。如果说,N.P.理论形成以前,数理统计的研究主要是寻求解决问题的方法的话,那么N.P.理论就明确地提出了应该寻求优良的方法,而优良性有客观的标准。于是,马上就会提出的问题是:现有的一些方法如t、F检验等是否具有优良性呢?也就是要问,它们的功效函数是否在一定范围内就是最大的。1938年许宝騄导出了霍太林提出的T2检验在一定意义下是局部最优的,主要的困难是在零假设不成立时,如何导出T2的分布,通常称为非零分布,有了非零分布才能讨论功效函数的大小。他的这一工作在N.P.理论和多元统计分析中都是占有重要地位的先驱性工作。许宝騄的另一项重要工作是在1943年完成的,在讨论检验方法的优良性时,对于线性模型的线性假设,第一次证明了似然比检验的优良性,是对多参数假设检验第一个非局部优良性的工作,如用λ表示似然比检验非零分布中的非中心参数,他证明了:如果功效函数只依赖于λ,那么似然比检验就是一致最强的。后来的研究发现这个条件等价于要求检验具有某一种不变性——这种不变性的要求是问题本身很自然的、合理的要求,因而就相当于证明了似然比检验是一致最强不变检验。莱曼在纪念许宝騄的文章中写了如下的这一段话来论述这篇论文的意义:
“这篇文章开创了两个发展方向。一方面,他的学生席玛卡将许的方法用于多元问题(霍太林的T2及多元相关系数)……。另一方面,在这篇文章中,许提供了获得全部相似检验的新方法。在许的建议下,席玛卡和莱曼将这个方法用于其他问题,后来莱曼和谢飞形成了完备性的概念。”
这足以说明许宝騄在这一方面的工作对后来的研究有多大的影响。
在参数估计方面,当时大部分人关心的是均值估计的优良性,寻找极小方差的无偏估计。1938年许在论文中第一个讨论线性模型中参数б2的优良估计问题。在二次无偏的估计类中,如要求估计量的方差与期望值参数无关,他证明了通常的无偏估计S2具有一致最小方差的充分必要条件是4阶矩具有与正态相同的关系式(这一条件在现在的文献中称为准正态分布)。这个工作直到1952年,拉奥才从另一个角度——限定二次估计是非负的——重新讨论了这个问题,得出了另一种充分必要条件。到了70年代末期,方差分量的模型引起了统计界的广泛注意,许宝騄的工作是这个方向的起始点,而且他提出的方法仍然是处理更加复杂问题的有力工具,有的论文就用许氏模型这一名称来代表这类问题。
(续下页)
[1] [2] 下一页